Investigation of Refractory Black Carbon-Containing Particle Morphologies Using the Single-Particle Soot Photometer (SP2)

نویسندگان

  • Arthur J. Sedlacek
  • Ernie R. Lewis
  • Timothy B. Onasch
  • Andrew T. Lambe
  • Paul Davidovits
چکیده

An important source of uncertainty in radiative forcing by absorbing aerosol particles is the uncertainty in their morphologies (i.e., the location of the absorbing substance on/in the particles). To examine the effects of particle morphology on the response of an individual black carbon-containing particle in a Single-Particle Soot Photometer (SP2), a series of experiments was conducted to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2)

[1] The large uncertainty associated with black carbon (BC) direct forcing is due, in part, to the dependence of light absorption of BC-containing particles on the position of the BC within the particle. It is predicted that this absorption will be greatest for an idealized core-shell configuration in which the BC is a sphere at the center of the particle whereas much less absorption should be ...

متن کامل

Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 ave...

متن کامل

Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration

The mass and effective density of black carbon (BC) particles generated from aqueous suspensions of Aquadag and fullerene soot was measured and parametrized as a function of their mobility diameter. The measurements were made by two independent research groups by operating a differential mobility analyser (DMA) in series with an aerosol particle mass analyser (APM) or a Couette centrifugal part...

متن کامل

Black carbon measurements in the boundary layer over western and northern Europe

Europe is a densely populated region that is a significant global source of black carbon (BC) aerosol, but there is a lack of information regarding the physical properties and spatial/vertical distribution of rBC in the region. We present the first aircraft observations of sub-micron refractory BC (rBC) aerosol concentrations and physical properties measured by a single particle soot photometer...

متن کامل

The mass and number size distributions of black carbon aerosol over Europe

Black carbon-containing aerosol particles play an important role in the direct and indirect radiative forcing of climate. However, the magnitude and sign of the net radiative effect is strongly dependent on the physical properties of the black carbon (BC) component of the particles, such as mass concentration, number size distribution and mixing state. Here we use a global aerosol model combine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015